Linear algebra - Practice problems for midterm 2

1. Let $T: \mathcal{P}_2 \to \mathcal{P}_3$ be the linear transformation given by

$$T(p(x)) = \frac{dp(x)}{dx} - xp(x),$$

where $\mathcal{P}_2, \mathcal{P}_3$ are the spaces of polynomials of degrees at most 2 and 3 respectively.

(a) Find the matrix representative of T relative to the bases $\{1, x, x^2\}$ and $\{1, x, x^2, x^3\}$ for \mathcal{P}_2 and \mathcal{P}_3 .

Solution:	0	1	0	
	-1	0	2	
	0	-1	0	·
	0	0	-1	

- (b) Find the kernel of T. Solution: The kernel is $\{0\}$.
- (c) Find a basis for the range of T. Solution: This is the same as the column space of the matrix in (a), but expressed as elements of \mathcal{P}_3 . Row reducing the matrix we find that the range has basis $\{-x, 1 - x^2, 2x - x^3\}$.
- **2.** Determine whether the following subsets of \mathcal{P}_3 are subspaces.
 - (a) $U = \{p(x) : p(3) = 0\}$ Solution: This is a subspace. If $p(x), q(x) \in U$, then (p+q)(3) = p(3) + q(3) = 0, so $p(x) + q(x) \in U$. Also $(rp)(3) = r \cdot p(3) = 0$, so $rp(x) \in U$ for any $r \in \mathbb{R}$.
 - (b) $V = \{p(x) : p(0) = 1\}$ Solution: This is not a subspace because it does not contain the zero polynomial.
 - (c) $W = \{p(x) : \text{ the coefficient of } x^2 \text{ in } p(x) \text{ is } 0\}.$ Solution: This is a subspace, because if p(x), q(x) have no x^2 term, then neither do p(x) + q(x) and rq(x) for $r \in \mathbb{R}$.

3. Let $M_{m \times n}$ be the vector space of $m \times n$ matrices, with the usual operations of addition and scalar multiplication.

(a) Let A be an $m \times m$ matrix. Is the function

$$T: M_{m \times n} \to M_{m \times n}$$

given by T(B) = AB a linear transformation? Solution: It is a linear transformation. We need to check T(B+C) = T(B) + T(C) and T(rB) = rT(B):

$$T(B+C) = A(B+C) = AB + AC = T(B) + T(C)$$
$$T(rB) = A(rB) = rAB = rT(B).$$

(b) Let V ⊂ M_{m×n} be the subset consisting of those matrices, whose entries all add up to zero. Is V a subspace of M_{m×n}? Solution: This is a subspace, since if A, B have entries adding up to zero, then so do A + B and rA for any r ∈ ℝ. **4.** Show that the subspaces $\operatorname{sp}(x - x^2, 2x)$ and $\operatorname{sp}(x^2, 3x + x^2)$ of \mathcal{P}_2 are equal. Solution: We first show that $x - x^2, 2x \in \operatorname{sp}(x^2, 3x + x^2)$:

$$x - x^{2} = \frac{1}{3}(3x + x^{2}) - \frac{1}{3}x^{2} - x^{2}$$
$$2x = \frac{2}{3}\left[(3x + x^{2}) - x^{2}\right].$$

It follows that $sp(x - x^2, 2x)$ is a subspace of $sp(x^2, 3x + x^2)$. Similarly, from

$$x^{2} = -(x - x^{2}) + \frac{1}{2}(2x)$$

$$3x + x^{2} = -(x - x^{2}) + \frac{1}{2}(2x) + \frac{3}{2}(2x),$$

it follows that $sp(x^2, 3x + x^2)$ is a subspace of $sp(x - x^2, 2x)$. This means that the two subspaces are equal.

5. Find a basis for the subspace $sp(1 + x^2, 2x - x^2, 4x + 2)$ of \mathcal{P}_3 . Solution: Using the basis $\{1, x, x^2, x^3\}$ for \mathcal{P}_3 , we can write the vectors $1 + x^2, 2x - x^2, 4x + 2$ as the columns of the matrix

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 4 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Row reducing the matrix, we find that a basis is given by $\{1 + x^2, 2x - x^2\}$.

6. Working in the space \mathcal{P}_3 , find the coordinate vector of x^2 , relative to the basis $\{1, x - 1, (x - 1)^2, (x - 1)^3\}$. Solution: We need to find a_1, a_2, a_3, a_4 such that

$$x^{2} = a_{1} + a_{2}(x-1) + a_{3}(x-1)^{2} + a_{4}(x-1)^{3}.$$

One can write this as a matrix, and we find $a_1 = 1$, $a_2 = 2$, $a_3 = 1$, $a_4 = 0$, so the coordinate vector of x^2 in the basis is [1, 2, 1, 0].

7. Compute the determinant

$$\det \begin{bmatrix} 3 & -2 & 7 & 6 \\ -4 & 0 & 2 & 1 \\ 5 & 2 & 0 & -2 \\ 2 & 0 & -1 & 0 \end{bmatrix}$$

Solution: Use column and row operations to simplify the calculation:

$$\det \begin{bmatrix} 3 & -2 & 7 & 6\\ -4 & 0 & 2 & 1\\ 5 & 2 & 0 & -2\\ 2 & 0 & -1 & 0 \end{bmatrix} = -\det \begin{bmatrix} -2 & 3 & 7 & 6\\ 0 & -4 & 2 & 1\\ 2 & 5 & 0 & -2\\ 0 & 2 & -1 & 0 \end{bmatrix}$$
$$= -\det \begin{bmatrix} -2 & 3 & 7 & 6\\ 0 & -4 & 2 & 1\\ 0 & 8 & 7 & 4\\ 0 & 2 & -1 & 0 \end{bmatrix} = \det \begin{bmatrix} -2 & 3 & 7 & 6\\ 0 & 2 & -1 & 0\\ 0 & 8 & 7 & 4\\ 0 & -4 & 2 & 1 \end{bmatrix}$$
$$= \det \begin{bmatrix} -2 & 3 & 7 & 6\\ 0 & 2 & -1 & 0\\ 0 & 8 & 7 & 4\\ 0 & -4 & 2 & 1 \end{bmatrix}$$

8. Suppose that A is an $n \times n$ matrix, such that all of the entries of A add up to zero. Is it true that det(A) = 0? Solution: It is not true, for example

$$\det \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} = 1.$$