Linear algebra - Practice problems for midterm 2

1. Let $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ be the linear transformation given by

$$
T(p(x))=\frac{d p(x)}{d x}-x p(x)
$$

where $\mathcal{P}_{2}, \mathcal{P}_{3}$ are the spaces of polynomials of degrees at most 2 and 3 respectively.
(a) Find the matrix representative of T relative to the bases $\left\{1, x, x^{2}\right\}$ and $\left\{1, x, x^{2}, x^{3}\right\}$ for \mathcal{P}_{2} and \mathcal{P}_{3}. Solution: $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 2 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$.
(b) Find the kernel of T.

Solution: The kernel is $\{0\}$.
(c) Find a basis for the range of T.

Solution: This is the same as the column space of the matrix in (a), but expressed as elements of \mathcal{P}_{3}. Row reducing the matrix we find that the range has basis $\left\{-x, 1-x^{2}, 2 x-x^{3}\right\}$.
2. Determine whether the following subsets of \mathcal{P}_{3} are subspaces.
(a) $U=\{p(x): p(3)=0\}$

Solution: This is a subspace. If $p(x), q(x) \in U$, then $(p+q)(3)=p(3)+q(3)=0$, so $p(x)+q(x) \in U$. Also $(r p)(3)=r \cdot p(3)=0$, so $r p(x) \in U$ for any $r \in \mathbb{R}$.
(b) $V=\{p(x): p(0)=1\}$

Solution: This is not a subspace because it does not contain the zero polynomial.
(c) $W=\left\{p(x)\right.$: the coefficient of x^{2} in $p(x)$ is 0$\}$.

Solution: This is a subspace, because if $p(x), q(x)$ have no x^{2} term, then neither do $p(x)+q(x)$ and $r q(x)$ for $r \in \mathbb{R}$.
3. Let $M_{m \times n}$ be the vector space of $m \times n$ matrices, with the usual operations of addition and scalar multiplication.
(a) Let A be an $m \times m$ matrix. Is the function

$$
T: M_{m \times n} \rightarrow M_{m \times n}
$$

given by $T(B)=A B$ a linear transformation?
Solution: It is a linear transformation. We need to check $T(B+C)=T(B)+T(C)$ and $T(r B)=r T(B)$:

$$
\begin{gathered}
T(B+C)=A(B+C)=A B+A C=T(B)+T(C) \\
T(r B)=A(r B)=r A B=r T(B) .
\end{gathered}
$$

(b) Let $V \subset M_{m \times n}$ be the subset consisting of those matrices, whose entries all add up to zero. Is V a subspace of $M_{m \times n}$?
Solution: This is a subspace, since if A, B have entries adding up to zero, then so do $A+B$ and $r A$ for any $r \in \mathbb{R}$.
4. Show that the subspaces $\operatorname{sp}\left(x-x^{2}, 2 x\right)$ and $\operatorname{sp}\left(x^{2}, 3 x+x^{2}\right)$ of \mathcal{P}_{2} are equal.

Solution: We first show that $x-x^{2}, 2 x \in \operatorname{sp}\left(x^{2}, 3 x+x^{2}\right)$:

$$
\begin{aligned}
x-x^{2} & =\frac{1}{3}\left(3 x+x^{2}\right)-\frac{1}{3} x^{2}-x^{2} \\
2 x & =\frac{2}{3}\left[\left(3 x+x^{2}\right)-x^{2}\right] .
\end{aligned}
$$

It follows that $\operatorname{sp}\left(x-x^{2}, 2 x\right)$ is a subspace of $\operatorname{sp}\left(x^{2}, 3 x+x^{2}\right)$. Similarly, from

$$
\begin{aligned}
x^{2} & =-\left(x-x^{2}\right)+\frac{1}{2}(2 x) \\
3 x+x^{2} & =-\left(x-x^{2}\right)+\frac{1}{2}(2 x)+\frac{3}{2}(2 x),
\end{aligned}
$$

it follows that $\operatorname{sp}\left(x^{2}, 3 x+x^{2}\right)$ is a subspace of $\operatorname{sp}\left(x-x^{2}, 2 x\right)$. This means that the two subspaces are equal.
5. Find a basis for the subspace $\operatorname{sp}\left(1+x^{2}, 2 x-x^{2}, 4 x+2\right)$ of \mathcal{P}_{3}.

Solution: Using the basis $\left\{1, x, x^{2}, x^{3}\right\}$ for \mathcal{P}_{3}, we can write the vectors $1+x^{2}, 2 x-x^{2}, 4 x+2$ as the columns of the matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 2 & 4 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Row reducing the matrix, we find that a basis is given by $\left\{1+x^{2}, 2 x-x^{2}\right\}$.
6. Working in the space \mathcal{P}_{3}, find the coordinate vector of x^{2}, relative to the basis $\left\{1, x-1,(x-1)^{2},(x-1)^{3}\right\}$. Solution: We need to find $a_{1}, a_{2}, a_{3}, a_{4}$ such that

$$
x^{2}=a_{1}+a_{2}(x-1)+a_{3}(x-1)^{2}+a_{4}(x-1)^{3} .
$$

One can write this as a matrix, and we find $a_{1}=1, a_{2}=2, a_{3}=1, a_{4}=0$, so the coordinate vector of x^{2} in the basis is $[1,2,1,0]$.
7. Compute the determinant

$$
\operatorname{det}\left[\begin{array}{cccc}
3 & -2 & 7 & 6 \\
-4 & 0 & 2 & 1 \\
5 & 2 & 0 & -2 \\
2 & 0 & -1 & 0
\end{array}\right]
$$

Solution: Use column and row operations to simplify the calculation:

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cccc}
3 & -2 & 7 & 6 \\
-4 & 0 & 2 & 1 \\
5 & 2 & 0 & -2 \\
2 & 0 & -1 & 0
\end{array}\right]=-\operatorname{det}\left[\begin{array}{cccc}
-2 & 3 & 7 & 6 \\
0 & -4 & 2 & 1 \\
2 & 5 & 0 & -2 \\
0 & 2 & -1 & 0
\end{array}\right] \\
& =-\operatorname{det}\left[\begin{array}{cccc}
-2 & 3 & 7 & 6 \\
0 & -4 & 2 & 1 \\
0 & 8 & 7 & 4 \\
0 & 2 & -1 & 0
\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}
-2 & 3 & 7 & 6 \\
0 & 2 & -1 & 0 \\
0 & 8 & 7 & 4 \\
0 & -4 & 2 & 1
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccc}
-2 & 3 & 7 & 6 \\
0 & 2 & -1 & 0 \\
0 & 0 & 11 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]=-44
\end{aligned}
$$

8. Suppose that A is an $n \times n$ matrix, such that all of the entries of A add up to zero. Is it true that $\operatorname{det}(A)=0$? Solution: It is not true, for example

$$
\operatorname{det}\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right]=1
$$

